Multi-targeted molecular docking, pharmacokinetic analysis, and drug-likeness evaluation of alkaloids for anti-diabetic drug development












https://doi.org/10.47093/3034-4700.2025.2.1.53-68
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Diabetes mellitus is a global health challenge, particularly in low-income regions, leading to severe complications. Plant-derived alkaloids offer potential as alternatives to conventional therapies. This study evaluated 31 alkaloids for antidiabetic drug development through molecular docking, pharmacokinetics, and drug-likeness analyses. Four standard drugs (epalrestat, metformin, acarbose, glibenclamide) and four targets (aldose reductase, adenosine monophosphate-activated protein kinase, a-glucosidase, protein tyrosine phosphatase 1B) were used for computational simulations.
Molecular docking revealed that alkaloids mahanimbine (-11.5 kcal/mol), echinulin (11.3 kcal/mol), coptisine (-10.9 kcal/mol), and groenlandicine (-9.7 kcal/mol) have substantial binding affinities against aldose reductase compared to epalrestat (-9.3 Kcal/mol). In contrast to metformin (-4.8 kcal/mol), coptisine, echinulin, sanguinarine, and groelandicine showed superior binding affinities against adenosine monophosphateactivated protein kinase. In comparison to acarbose (-8.4 Kcal/mol), coptisine (-9.7 Kcal/mol), sanguinarine (-9.3 Kcal/mol), mahanimbine (-8.9 Kcal/mol), and echinulin (-8.9 Kcal/mol) demonstrated better docking scores against a-glucosidase. Jatrorrhizine, coptisine, sanguinarine, mahanimbine and echinuline respectively demonstrated higher binding scores of 8.8, -7.5, -7.5 and -7.2 Kcal/mol against protein tyrosine phosphatase 1B than glibenclamide (-7.0 Kcal/mol). Most alkaloids adhered to Lipinski’s rule, except casuarine 6-O-a-glucoside and conophylline. Pharmacokinetics identified pinoline as highly bioavailable and central nervous system penetrant, while conophylline had poor bioavailability.
The study concluded that alkaloids including mahanimbine, echinulin, coptisine, groenlandicine, sanguinarine, and jatrorrhizine show strong binding affinities and favorable pharmacokinetic properties, requiring further in vitro and in vivo studies for therapeutic validation
About the Authors
A. MeressaEthiopia
Asfaw Meressa, MSc, Researcher, Traditional and Modern Medicine Research and Development Directorate, In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
B. Girma
Ethiopia
Biruktawit Girma, MSc, Researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
T. Negassa
Ethiopia
Temesgen Negassa, MSc, Researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
G. Nigussie
Ethiopia
Gashaw Nigussie, MSc, Associate researcher, Traditional and Modern Medicine Research and De- velopment In silico and Modern Medicine Research Division; Communicable and Non-Communicable Research In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
M. Kasahun
Russian Federation
Mewded Kasahun, MSc, Researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
N. Abdisa
Ethiopia
Negessa Abdisa, MSc, Researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
S. Ashenef
Ethiopia
Sintayehu Ashenef, MSc, Associate researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
S. Taye
Ethiopia
Samson Taye, MSc, Researcher, Communicable and Non-Communicable Research In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
D. B. Belitibo
Ethiopia
Dereilo Bekere Belitibo, MSc, Lecturer, Associate researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
Z. Animaw
Ethiopia
Zelalem Animaw, PhD, Assistant professor, Researcher, Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University; Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division, Armauer Hansen Research Institute (AHRI),
P. O. Box 272, Debre Tabor, Ethiopia;
P. O. Box 1005, Addis Ababa, Ethiopia
W. Wakene
Ethiopia
Wakuma Wakene, MSc, Lecturer, Associate researcher, Traditional and Modern Medicine Research and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
B. Akele
Ethiopia
Baye Akele, MSc, Assistant professor, Associate researcher, Traditional and Modern Medicine Re- search and Development In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
M. Endale
Ethiopia
Milkyas Endale, PhD, Professor, Lead researcher, Traditional and Modern Medicine Research and Development Directorate, In silico and Modern Medicine Research Division
P. O. Box 1005, Addis Ababa, Ethiopia
References
1. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.
2. Dunachie S, Chamnan P. The double burden of diabetes and global infection in low and middle-income countries. Trans R Soc Trop Med Hyg. 2019;113(2):56-64. https://doi.org/10.1093/trstmh/try124.
3. Liu J, Bai R, Chai Z, et al. Lowand middle-income countries demonstrate rapid growth of type 2 diabetes: an analysis based on Global Burden of Disease 19902019 data. Diabetologia. 2022;65(8):1339-1352. https://doi.org/10.1007/s00125-022-05713-6.
4. Azevedo MJ. The State of Health System(s) in Africa: Challenges and Opportunities. In: Azevedo MJ. Historical Perspectives on the State of Health and Health Systems in Africa, Volume II. Palgrave Macmillan Cham. 2017;1-73.
5. Zekewos A, Loha E, Egeno T, et al. Prevalence of Diabetes Mellitus and Associated Factors in Southern Ethiopia: A Community Based Study. Ethiop J Health Sci. 2018;28(4):451-460. https://doi.org/10.4314/ejhs.v28i4.11.
6. Papatheodorou K, Banach M, Bekiari E, et al. Complications of Diabetes 2017. J Diabetes Res. 2018;2018:3086167. https://doi.org/10.1155/2018/3086167.
7. Ganesan K, Rana MBM, Sultan S. Oral Hypoglycemic Medications. In: StatPearls. Treasure Island (FL): StatPearls. 2023.
8. Adachi T, El-Hattab AW, Jain R, et al. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. Int J Environ Res Public Health. 2023;20(6):4732. https://doi.org/10.3390/ijerph20064732.
9. Hameed I, Masoodi SR, Mir SA, et al. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598-612. https://doi.org/10.4239/wjd.v6.i4.598.
10. Damián-Medina K, Salinas-Moreno Y, Milenkovic D, et al. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon. 2020;6(3):e03632. https://doi.org/10.1016/ j.heliyon.2020.e03632.
11. Elkhalifa AEO, Al-Shammari E, Adnan M, et al. Development and Characterization of Novel Biopolymer Derived from Abelmoschus esculentus L. Extract and Its Antidiabetic Potential. Molecules. 2021;26(12):3609. https://doi.org/10.3390/molecules26123609.
12. Amssayef A, Eddouks M. Alkaloids as Promising Agents for the Management of Insulin Resistance: A Review. Curr Pharm Des. 2023;29(39):3123-3136. https://doi.org/10.2174/ 0113816128270340231121043038.
13. Gutiérrez-Grijalva EP, Contreras L, Emus-Medina A, Heredia JB. Plant Alkaloids with Antidiabetic Potential. In: Chen H, Zhang M. Structure and Health Effects of Natural Products on Diabetes Mellitus. Springer Singapore; 2021:251-266.
14. Blahova J, Martiniakova M, Babikova M, et al. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel). 2021;14(8):806. https://doi.org/10.3390/ph14080806.
15. Shanmugam KR, Shanmugam B, Subbaiah GV, et al. Medicinal Plants and Bioactive Compounds for Diabetes Management: Important Advances in Drug Discovery. Curr Pharm Des. 2021;27(6):763-774. https://doi.org/10.2174/1381612826666200928160357.
16. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev. 2013;66(1):334-95. https://doi.org/10.1124/pr.112.007336.
17. Wu F, Zhou Y, Li L, et al. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem. 2020;8:726. https://doi.org/10.3389/ fchem.2020.00726.
18. Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. https://doi.org/10.1038/s41598-023-40160-2.
19. Behl T, Gupta A, Albratty M, et al. Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules. 2022;27(18):5851. https://doi.org/10.3390/molecules27185851.
20. Sharma S, Sharma A, Gupta U (2021) Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1.0.0. Ann Antivir Antiretrovir. 2021;5(1):028-032. https://doi.org/10.17352/aaa.000013
21. Rahman N, Muhammad I; Gul-E-Nayab; et al. Molecular Docking of Isolated Alkaloids for Possible -Glucosidase Inhibition. Biomolecules. 2019;9(10):544. https://doi.org/10.3390/biom9100544.
22. Ragab FA, Yahya TA, El-Naa MM, Arafa RK. Design, synthesis and structure-activity relationship of novel semi-synthetic flavonoids as antiproliferative agents. Eur J Med Chem. 2014;82:506-20. https://doi.org/10.1016/j.ejmech.2014.06.007.
23. O'Boyle NM, Banck M, James CA, et al. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33.
24. Tiong SH, Looi CY, Hazni H, et al. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18(8):9770-84. https://doi.org/10.3390/molecules18089770.
25. Alam S, Sarker MMR, Sultana TN, et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne). 2022;13:800714. https://doi.org/10.3389/fendo.2022.800714.
26. Salehi B, Ata A, V Anil Kumar N, et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019;9(10):551. https://doi.org/10.3390/ biom9100551.
27. Aba, PE, Asuzu, IU. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. Indian Journal of Natural Products and Resources. 2018; 9:85-96.
28. Sharma R, Bolleddu R, Maji JK, et al. In-Vitro -amylase, -glucosidase Inhibitory Activities and In-Vivo Anti-Hyperglycemic Potential of Different Dosage Forms of Guduchi (Tinospora Cordifolia [Willd.] Miers) Prepared With Ayurvedic Bhavana Process. Front Pharmacol. 2021;12:642300. https://doi.org/10.3389/fphar.2021.642300.
29. Seal S, Kar S, Pal S, et al., Alkaloids of Natural Origin with Promising Anti-Diabetic Properties. In: Odoh UE, Tijani H, Egbuna C. Advances in Pharmacognosy and Phytochemistry of Diabetes. Intelligentsia publishing service; 2024:61-83.
30. Meng FC, Wu ZF, Yin ZQ, et al. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med. 2018;13:13. https://doi.org/10.1186/s13020-018-0171-3.
31. Gao H, Huang YN, Gao B, et al J. Inhibitory effect on -glucosidase by Adhatoda vasica Nees. Food Chem. 2008;108(3):965-72. https://doi.org/10.1016/j.foodchem.2007.12.002.
32. Abd El-Wahab AE, Ghareeb DA, Sarhan EE, et al. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetyl-cholinesterase, anti-diabetic and anticancer effects. BMC Complement Altern Med. 2013;13:218. https://doi.org/10.1186/1472-6882-13-218.
33. Bonaccini C, Chioccioli M, Parmeggiani C et al., Synthesis, biological evaluation and docking studies of casuarine analogues: effects of structural modifications at ring B on inhibitory activity towards glucoamylase. Eur. J. Org. Chem. 2010: 5574-5585. https://doi.org/10.1002/ejoc.201000632.
34. Muema FW, Nanjala C, Oulo MA, Wangchuk P. Phytochemical Content and Antidiabetic Properties of Most Commonly Used Antidiabetic Medicinal Plants of Kenya. Molecules. 2023;28(20):7202. https://doi.org/10.3390/molecules28207202.
35. Dineshkumar B, Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigi (rutaceae) leaves. Int J of Phytomed. 2010;2(1):22-30.
36. Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev. 2022;21(4):1049-1079. https://doi.org/10.1007/s11101-021-09773-1.
37. Goel S, Singh R, Singh V, et al. Metformin: Activation of 5' AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet. 2022;13:1022739. https://doi.org/10.3389/fgene.2022.1022739.
38. Madeswaran A, Umamaheswari M, Asokkumar K, et al., Discovery of potential aldose reductase inhibitors using in silico docking studies. Orient Pharm Exp Med. 2012;12:157-161. https://doi.org/10.1007/s13596-012-0065-3
39. Jhong CH, Riyaphan J, Lin SH, et al. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors. 2015;41(4):242-51. https://doi.org/10.1002/biof.1219.
40. Müller A, Neukam M, Ivanova A, et al. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags. Sci Rep. 2017;7(1):23. https://doi.org/10.1038/s41598-017-00033-x.
41. Olaokun OO, Manonga SA, Zubair MS, et al. Molecular Docking and Molecular Dynamics Studies of Antidiabetic Phenolic Compound Isolated from Leaf Extract of Englerophytum magalismontanum (Sond.) T.D.Penn. Molecules. 2022;27(10):3175. https://doi.org/10.3390/molecules27103175.
42. Sulaiman NAS, Azman MFSN, Aluwi MFFM, et al. Stereospecific -glucosidase inhibition, kinetics, and molecular docking studies on isolated diastereomeric alkaloids from Uncaria longiflora. Results Chem. 2025;13:101926. https://doi.org/10.1016/j.rechem.2024.101926
43. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-W263. https://doi.org/10.1093/nar/gky318.
44. Demir C, İstifli ES. Docking-based virtual screening, ADMET, and network pharmacology prediction of anthocyanidins against human alpha-amylase and alpha-glucosidase enzymes as potential antidiabetic agents. International Journal of Plant Based Pharmaceuticals, 2022;2(2):271-283.
45. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104.
46. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049-3062. https://doi.org/10.1016/j.apsb.2022.02.002.
47. Dulsat J, López-Nieto B, Estrada-Tejedor R, Borrell JI. Evaluation of Free Online ADMET Tools for Academic or Small Biotech Environments. Molecules. 2023;28(2):776. https://doi.org/10.3390/molecules28020776.
48. Suhandi C, Wilar G, Narsa AC, et al. Updating the Pharmacological Effects of Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther. 2024;18:4723-4748. https://doi.org/10.2147/DDDT.S478388.
49. Venkatraman V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J Cheminform. 2021;13(1):75. https://doi.org/10.1186/s13321-021-00557-5.
50. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64(Supplement):4-17.
51. Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004;1(4):337-341.
52. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89-98. https://doi.org/10.1016/j.addr.2016.05.007.
53. Tafreshi NK, Kil H, Pandya DN, et al. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol Transl Sci. 2021;4(2):953-965. https://doi.org/10.1021/acsptsci.1c00035.
54. Morak-Młodawska B, Jeleń M, Martula E, Korlacki R. Study of Lipophilicity and ADME Properties of 1,9-Diazaphenothiazines with Anticancer Action. Int J Mol Sci. 2023;24(8):6970. https://doi.org/10.3390/ijms24086970.
55. Kadela-Tomanek M, Jastrzębska M, Marciniec K, et al. Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-CoV-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone. Pharmaceutics. 2021;13(6):781. https://doi.org/10.3390/pharmaceutics13060781.
56. Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23. https://doi.org/10.1021/jm020017n.
57. Martin JL, Esmaeili H, Manuel RC, et al. Pharmacokinetics/Pharmacodynamics of Dabigatran 75 mg Twice Daily in Patients With Nonvalvular Atrial Fibrillation and Severely Impaired Renal Function. J Cardiovasc Pharmacol Ther. 2018;23(5):399-406. https://doi.org/10.1177/1074248418769167.
58. Asano D, Takakusa H, Nakai D. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics. 2023;16(1):47. https://doi.org/10.3390/pharmaceutics16010047.
59. Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863-75. https://doi.org/10.1517/17460441.2012.714363.
Supplementary files
![]() |
1. Supplement A | |
Subject | ||
Type | Research Materials | |
Download
(163KB)
|
Indexing metadata ▾ |
Title | Supplement A | |
Type | Research Materials | |
Date | 2025-05-20 |
![]() |
2. Supplement B | |
Subject | ||
Type | Research Materials | |
Download
(122KB)
|
Indexing metadata ▾ |
Title | Supplement B | |
Type | Research Materials | |
Date | 2025-05-20 |
![]() |
3. Supplement C | |
Subject | ||
Type | Research Materials | |
Download
(154KB)
|
Indexing metadata ▾ |
Title | Supplement C | |
Type | Research Materials | |
Date | 2025-05-20 |
![]() |
4. Supplement D | |
Subject | ||
Type | Research Materials | |
Download
(150KB)
|
Indexing metadata ▾ |
Title | Supplement D | |
Type | Research Materials | |
Date | 2025-05-20 |
![]() |
5. Supplement E | |
Subject | ||
Type | Research Results | |
Download
(106KB)
|
Indexing metadata ▾ |
Title | Supplement E | |
Type | Research Results | |
Date | 2025-05-20 |
![]() |
6. Supplement F | |
Subject | ||
Type | Research Materials | |
Download
(124KB)
|
Indexing metadata ▾ |
Title | Supplement F | |
Type | Research Materials | |
Date | 2025-05-20 |
![]() |
7. Supplement G | |
Subject | ||
Type | Research Materials | |
Download
(166KB)
|
Indexing metadata ▾ |
Title | Supplement G | |
Type | Research Materials | |
Date | 2025-05-20 |
Review
For citations:
Meressa A., Girma B., Negassa T., Nigussie G., Kasahun M., Abdisa N., Ashenef S., Taye S., Belitibo D.B., Animaw Z., Wakene W., Akele B., Endale M. Multi-targeted molecular docking, pharmacokinetic analysis, and drug-likeness evaluation of alkaloids for anti-diabetic drug development. The BRICS Health Journal. 2025;2(1):53-68. https://doi.org/10.47093/3034-4700.2025.2.1.53-68
ISSN 3034-4719 (Online)