Current challenges and future development of India’s healthcare system’ towards tuberculosis free India – research evidence and programmatic initiatives
https://doi.org/10.47093/3034-4700.2024.1.1.35-58
Abstract
Tuberculosis (TB), the single most infectious killer deserves special attention in a focussed manner, to reduce morbidity and mortality. We describe the challenges in the four pillars of TB control: detect or diagnosis, treat, prevent, build and elaborate the success stories, listing out newer and advanced tools like artificial intelligence, whole genome sequencing, clustered regularly interspaced short palindromic repeats based technologies, one health approach and cost effectiveness strategies for an all- round reduction in TB control. Special problems posed by paediatric and extra-pulmonary TB are dealt with. Post TB lung sequalae, reverse zoonosis and behavioural modification that can influence catastrophic costs are explored. Use of molecular and genomic methods of TB detection has revolutionized TB care with increased sensitivity of diagnosis, and timely detection of drug resistance, saving many a precious lives. Undoubtedly, the need of the hour would be shortening TB treatment duration and comprehensive preventive strategies that simultaneously decrease both the incidence and prevalence of TB. The various schemes and initiatives undertaken by the Government of India including the Pradhan Mantri TB Mukt Bharat Abhiyaan – “TB free India” stand as a unique solution in the wake of eliminating TB. India has been extending its success stories to other countries as well, by creating platforms for multilateral research and multinational implementation. This manuscript gives a concise and comprehensive outlook of process involved in TB elimination, amalgamating the research evidences with the programmatic initiatives, enlisting the existing challenges, envisaging the current achievements, providing a road map for TB elimination.
About the Authors
N. GopalanIndia
Narendran Gopalan, Scientist F, Senior Deputy Director, Indian Council
Chennai – 600031
A. Newtonraj
India
Ariarathinam Newtonraj, Scientist E, Deputy Director
Chennai – 600031
L. K. Elizabeth
India
Luke Hanna Elizabeth, Scientist F, Senior Deputy Director
Chennai – 600031
S. K. Shanmugam
India
Siva Kumar Shanmugam, Scientist D, Asst. Director
Chennai – 600031
U. D. Ranganathan
India
Uma Devi Ranganathan, Scientist F, Senior Deputy Director
Chennai – 600031
M. Muniyandi
India
Malaisamy Muniyandi, Scientist E, Deputy Director
Chennai – 600031
B. Ramraj
India
Balaji Ramraj, Scientist E, Deputy Director
Chennai – 600031
B. Devaleenal
India
Bella Devaleenal, Scientist E, Deputy Director
Chennai – 600031
A. Venkataraman
India
Aishwarya Venkataraman, Scientist E, Deputy Director
Chennai – 600031
K. Nagarajan
India
Karikalan Nagarajan, Scientist B, Research officer
Chennai – 600031
R. Bethunaickan
India
Ramalingam Bethunaickan, Scientist E, Deputy Director
Chennai – 600031
M. K. Sathya Narayanan
India
Mukesh Kumar Sathya Narayanan, Scientist B, Research Officer
Chennai – 600031
M. Deka
India
Mrigen Deka, World Health Organization National Tuberculosis Consultant, Central Tuberculosis Division
New Delhi – 110011
S. Selvaraju
India
Sriram Selvaraju, Scientist E, Deputy Director
Chennai – 600031
R. Santhanakrishnan
India
Rameshkumar Santhanakrishnan, Scientist F, Senior Deputy Director
Chennai – 600031
R. Krishnan
India
Rajendran Krishnan, Scientist E, Deputy Director
Chennai – 600031
P. Chinnaiyan
India
Ponnuraja Chinnaiyan, Scientist F, Senior Deputy Director
Chennai – 600031
K. Palaniyandi
India
Kannan Palaniyandi, Scientist E, Deputy Director
Chennai – 600031
U. Vetrivel
India
Umashankar Vetrivel, Scientist E, Deputy Director
Chennai – 600031
S. M. Jeyakumar
India
Shanmugam Murugaiha Jeyakumar, Scientist F, Senior Deputy Director
Chennai – 600031
S. Natarajan
India
Saravanan Natarajan, Scientist E, Deputy Director
Chennai – 600031
A. Mathur
India
Alok Mathur, Additional Deputy Director General, Central Tuberculosis Division
New Delhi – 110011
References
1. Dickinson JM, Mitchison DA. In vitro studies on the choice of drugs for intermittent chemotherapy of tuberculosis. Tubercle. 1966;47:370-380. doi: 10.1016/S0041-3879(66)80022-3
2. Abbas AK, Andrew H. Lichtman, et al. Cellular and Molecular Immunology. 10th ed. Elsevier; 2022.
3. Cabibbe AM, Sotgiu G, Izco S, Migliori GB. Genotypic and phenotypic M. tuberculosis resistance: guiding clinicians to prescribe the correct regimens. Eur Respir J. 2017;50(6):1702292. Published 2017 Dec 28. doi:10.1183/13993003.02292-2017
4. Cabibbe AM, Spitaleri A, Battaglia S, et al. Application of Targeted Next-Generation Sequencing Assay on a Portable Sequencing Platform for Culture-Free Detection of Drug-Resistant Tuberculosis from Clinical Samples. J Clin Microbiol. 2020;58(10):e00632-20. Published 2020 Sep 22. doi:10.1128/JCM.00632-20
5. Shanmugam SK, Kumar N, Sembulingam T, et al. Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India. Microbiol Spectr. 2022;10(3):e0159421. doi:10.1128/spectrum.01594-21
6. Jayaprakasam M, Pandey RM, Choudhary H, et al. Evaluation of molecular diagnostic test for detection of adult pulmonary tuberculosis: A generic protocol. Indian J Med Res. 2024;159(2):246-253. doi:10.4103/ijmr.ijmr_2316_23
7. Grzybowski S, Enarson D. Le devenir des tuberculeux pulmonaires dans diverses circonstances de programmes de traitement [Results in pulmonary tuberculosis patients under various treatment program conditions]. Bull Int Union Tuberc. 1978;53(2):70-75.
8. Tuberculosis Chemotherapy Centre. A concurrent comparison of home and sanatorium treatment of pulmonary tuberculosis in South India. Bull World Health Organ. 1959;21(1):51-144.
9. Study of chemotherapy regimens of 5 and 7 months' duration and the role of corticosteroids in the treatment of sputum-positive patients with pulmonary tuberculosis in South India. Tubercle. 1983;64(2):73-91. doi:10.1016/0041-3879(83)90032-6
10. Tuberculosis Research Centre, Chennai (2002) Shortening short course chemotherapy: a randomized clinical trial for the treatment of smear positive pulmonary tuberculosis with regimens using ofloxacin in the intensive phase. Indian Journal of Tuberculosis, (1):27-38. ISSN 0019-5705
11. Intermittent treatment of pulmonary tuberculosis: A Concurrent Comparison of Twice-weekly Isoniazid plus Streptomycin and Daily Isoniazid plus p-Aminosalicylic Acid in Domiciliary Treatment. The Lancet. 1963; 281(7290):1078-1080. doi:10.1016/S0140-6736(63)92115-9
12. Controlled comparison of oral twice-weekly and oral daily isoniazid plus PAS in newly diagnosed pulmonary tuberculosis. Br Med J. 1973;2(5857):7-11.
13. Swaminathan S, Narendran G, Venkatesan P, et al. Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial. Am J Respir Crit Care Med. 2010;181(7):743-751. doi:10.1164/rccm.200903-0439OC
14. Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized clinical trial of thrice-weekly 4-month moxifloxacin or gatifloxacin containing regimens in the treatment of new sputum positive pulmonary tuberculosis patients. PLoS One. 2013;8(7):e67030. Published 2013 Jul 3. doi:10.1371/journal.pone.0067030
15. Swaminathan S, Padmapriyadarsini C, Venkatesan P, et al. Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial. Clin Infect Dis. 2011;53(7):716-724. doi:10.1093/cid/cir447
16. Velayutham B, Jawahar MS, Nair D, et al. 4-month moxifloxacin containing regimens in the treatment of patients with sputum-positive pulmonary tuberculosis in South India – a randomised clinical trial. Trop Med Int Health. 2020;25(4):483-495. doi:10.1111/tmi.13371
17. Gopalan N, Santhanakrishnan RK, Palaniappan AN, et al. Daily vs Intermittent Antituberculosis Therapy for Pulmonary Tuberculosis in Patients With HIV: A Randomized Clinical Trial. JAMA Intern Med. 2018;178(4):485-493. doi:10.1001/jamainternmed.2018.0141
18. Gopalan N, Chandrasekaran P, Swaminathan S, Tripathy S. Current trends and intricacies in the management of HIV-associated pulmonary tuberculosis. AIDS Res Ther. 2016;13:34. Published 2016 Sep 26. doi:10.1186/s12981-016-0118-7
19. Narendran G, Menon PA, Venkatesan P, et al. Acquired rifampicin resistance in thrice-weekly antituberculosis therapy: impact of HIV and antiretroviral therapy. Clin Infect Dis. 2014;59(12):1798-1804. doi:10.1093/cid/ciu674
20. Goodall RL, Meredith SK, Nunn AJ, et al. Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial [published correction appears in Lancet. 2022 Nov 19;400(10365):1766. doi: 10.1016/S0140-6736(22)02307-8]. Lancet. 2022;400(10366):1858-1868. doi:10.1016/S0140-6736(22)02078-5
21. Imperial MZ, Nahid P, Phillips PPJ, et al. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis [published correction appears in Nat Med. 2019 Jan;25(1):190. doi: 10.1038/s41591-018-0294-1]. Nat Med. 2018;24(11):1708-1715. doi:10.1038/s41591-018-0224-2
22. Gopalan N, Srinivasalu VA, Chinnayan P, et al. Predictors of unfavorable responses to therapy in rifampicin-sensitive pulmonary tuberculosis using an integrated approach of radiological presentation and sputum mycobacterial burden. PloS one. 2021;16(9):e0257647.
23. Dorman SE, Nahid P, Kurbatova EV, et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis. N Engl J Med. 2021;384(18):1705-1718. doi:10.1056/NEJMoa2033400
24. Perumal Kannabiran B, Palaniappan NA, Manoharan T, et al. Safety and Efficacy of 25 mg/kg and 35 mg/kg vs 10 mg/kg Rifampicin in Pulmonary TB: A Phase IIb Randomized Controlled Trial. Open Forum Infect Dis. 2024;11(3):ofae034. Published 2024 Feb 2. doi:10.1093/ofid/ofae034
25. Narendran G, Andrade BB, Porter BO, et al. Paradoxical tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in HIV patients with culture confirmed pulmonary tuberculosis in India and the potential role of IL-6 in prediction. PLoS One. 2013;8(5):e63541. Published 2013 May 17. doi:10.1371/journal.pone.0063541
26. Singh UB, Singh M, Rodrigues C, et al. Multi-centric evaluation of Truenat MTB and MTB-RIF Dx assays for diagnosis of extrapulmonary tuberculosis. Sci Rep. 2024;14(1):15680. Published 2024 Jul 8. doi:10.1038/s41598-024-64688-z
27. Purohit MR, Purohit R, Mustafa T. Patient Health Seeking and Diagnostic Delay in Extrapulmonary Tuberculosis: A Hospital Based Study from Central India. Tuberc Res Treat. 2019;2019:4840561. Published 2019 Feb 3. doi:10.1155/2019/4840561
28. Rasouli MR, Mirkoohi M, Vaccaro AR, et al. Spinal tuberculosis: diagnosis and management. Asian Spine J. 2012;6(4):294-308. doi:10.4184/asj.2012.6.4.294
29. Paradkar MS, Devaleenal D B, Mvalo T, et al. Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial. Clin Infect Dis. 2022;75(9):1594-1601. doi:10.1093/cid/ciac208
30. Hissar S, Velayutham B, Tamizhselvan M, et al. Efficacy and Tolerability of a 4-month Ofloxacin-Containing Regimen Compared to a 6-month Regimen in The Treatment of Patients With Superficial Lymph Node Tuberculosis: a Randomized Trial. BMC Infect Dis. 2024,729 (2024). https://doi.org/10.1186/s12879-024-09511-w
31. Thomas TA. Tuberculosis in Children. Pediatr Clin North Am. 2017;64(4):893-909. doi:10.1016/j.pcl.2017.03.010
32. Seddon JA, Shingadia D. Epidemiology and disease burden of tuberculosis in children: a global perspective. Infect Drug Resist. 2014;7:153-165. Published 2014 Jun 18. doi:10.2147/IDR.S45090
33. Siamisang K, Rankgoane-Pono G, Madisa TM, et al. Pediatric tuberculosis outcomes and factors associated with unfavorable treatment outcomes in Botswana, 2008-2019: a retrospective analysis. BMC Public Health. 2022;22(1):2020. Published 2022 Nov 4. doi:10.1186/s12889-022-14477-y
34. Berti E, Galli L, Venturini E, de Martini M, et al. Tuberculosis in childhood: a systematic review of national and international guidelines. BMC Infect Dis. 2014;14 Suppl 1(Suppl 1):S3. doi:10.1186/1471-2334-14-S1-S3
35. Martinez L, Cords O, Horsburgh CR, Andrews JR; Pediatric TB Contact Studies Consortium. The risk of tuberculosis in children after close exposure: a systematic review and individual-participant meta-analysis. Lancet. 2020;395(10228):973-984. doi:10.1016/S0140-6736(20)30166-5
36. Chabala C, Turkova A, Thomason MJ, et al. Shorter treatment for minimal tuberculosis (TB) in children (SHINE): a study protocol for a randomised controlled trial. Trials. 2018;19(1):237. Published 2018 Apr 19. doi:10.1186/s13063-018-2608-5
37. Turkova A, Wills GH, Wobudeya E, et al. Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children. N Engl J Med. 2022;386(10):911-922. doi:10.1056/NEJMoa2104535
38. Basu Roy R, Whittaker E, Kampmann B. Current understanding of the immune response to tuberculosis in children. Curr Opin Infect Dis. 2012;25(3):250-257. doi:
39. Bhargava A, Bhargava M, Meher A, et al. Nutritional support for adult patients with microbiologically confirmed pulmonary tuberculosis: outcomes in a programmatic cohort nested within the RATIONS trial in Jharkhand, India. Lancet Glob Health. 2023;11(9):e1402-e1411. doi:10.1016/S2214-109X(23)00324-8
40. Rouf A, Masoodi MA, Dar MM, et al. Depression among Tuberculosis patients and its association with treatment outcomes in district Srinagar. J Clin Tuberc Other Mycobact Dis. 2021;25:100281. Published 2021 Nov 15. doi:10.1016/j.jctube.2021.100281
41. Suryavanshi N, Sane M, Gaikwad S, et al. Assessment of persistent depression among TB patients. Int J Tuberc Lung Dis. 2020;24(11):1208-1211. doi:10.5588/ijtld.20.0231
42. Ruiz-Grosso P, Cachay R, de la Flor A, et al. Association between tuberculosis and depression on negative outcomes of tuberculosis treatment: A systematic review and meta-analysis. PLoS One. 2020;15(1):e0227472. Published 2020 Jan 10. doi:10.1371/journal.pone.0227472
43. Rouf A, Masoodi MA, Dar MM, et al. Depression among Tuberculosis patients and its association with treatment outcomes in district Srinagar. J Clin Tuberc Other Mycobact Dis. 2021;25:100281. Published 2021 Nov 15. doi:10.1016/j.jctube.2021.100281
44. Panati D, Chittooru CS, Madarapu YR, Gorantla AK. Effect of depression on treatment adherence among elderly tuberculosis patients: A prospective interventional study. Clin Epidemiol Glob Health. 2023;22:101338. doi: 10.1016/j.cegh.2023.101338
45. Maroof M, Pamei G, Bhatt M, et al. Drug adherence to anti-tubercular treatment during COVID-19 lockdown in Haldwani block of Nainital district. Indian J Community Health. 2022;34:535–541.
46. Ragan EJ, Kleinman MB, Sweigart B, et al. The impact of alcohol use on tuberculosis treatment outcomes: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2020;24(1):73-82. doi:10.5588/ijtld.19.0080
47. Cox SR, Gupte AN, Thomas B, et al. Unhealthy alcohol use independently associated with unfavorable TB treatment outcomes among Indian men. Int J Tuberc Lung Dis. 2021;25(3):182-190. doi:10.5588/ijtld.20.0778
48. Thomas B, Watson B, Senthil EK, et al. Alcohol intervention strategy among tuberculosis patients: a pilot study from South India. Int J Tuberc Lung Dis. 2017;21(8):947-952. doi:10.5588/ijtld.16.0693
49. Suhadev M, Thomas BE, Raja Sakthivel M, et al. Alcohol use disorders (AUD) among tuberculosis patients: a study from Chennai, South India. PLoS One. 2011;6(5):e19485. doi:10.1371/journal.pone.0019485
50. Kan CK, Ragan EJ, Sarkar S, et al. Alcohol use and tuberculosis clinical presentation at the time of diagnosis in Puducherry and Tamil Nadu, India. PLoS One. 2020;15(12):e0240595. Published 2020 Dec 17. doi:10.1371/journal.pone.0240595
51. Thapa P, Kamath R, Shetty BK, et al. Prevalence and Associated Factors of Alcoholism among Tuberculosis Patients in Udupi Taluk, Karnataka, India: A Cross Sectional Study. J Nepal Health Res Counc. 2014;12(28):177-181.
52. Thummar PD, Rupani MP. Prevalence and predictors of hazardous alcohol use among tuberculosis patients: The need for a policy on joint tuberculosis-alcohol collaborative activities in India. Alcohol. 2020;86:113-119. doi:10.1016/j.alcohol.2020.03.006
53. Wyszewianski L. Financially catastrophic and high-cost cases: definitions, distinctions, and their implications for policy formulation. Inquiry. 1986;23(4):382-394.
54. Puteh SEW, Almualm Y. Catastrophic health expenditure among developing countries. Health Syst Policy Res. 2017;4:1.
55. Rajeswari R, Balasubramanian R, Muniyandi M, et al. Socio-economic impact of tuberculosis on patients and family in India. Int J Tuberc Lung Dis. 1999;3(10):869-877.
56. Muniyandi M, Ramachandran R, Balasubramanian R, Narayanan PR. Socio-economic dimensions of tuberculosis control: review of studies over two decades from Tuberculosis Research Center. J Commun Dis. 2006;38(3):204-215.
57. Muniyandi M, Thomas BE, Karikalan N, et al. Catastrophic costs due to tuberculosis in South India: comparison between active and passive case finding. Trans R Soc Trop Med Hyg. 2020;114(3):185-192. doi:10.1093/trstmh/trz127
58. Rucsineanu O, Agbassi P, Herrera R, et al. Shorter TB treatment regimens should be safer as well. Public Health Action. 2023;13(3):104-106. doi:10.5588/pha.23.0026
59. Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, Delamanid, Linezolid and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clin Infect Dis. Published online June 29, 2022. doi:10.1093/cid/ciac528
60. Putra ON, Yulistiani Y, Soedarsono S, Subay S. Favorable outcome of individual regimens containing bedaquiline and delamanid in drug-resistant tuberculosis: A systematic review. Int J Mycobacteriol. 2023;12(1):1-9. doi:10.4103/ijmy.ijmy_217_22
61. Ryckman TS, Schumacher SG, Lienhardt C, et al. Economic implications of novel regimens for tuberculosis treatment in three high-burden countries: a modelling analysis. Lancet Glob Health. 2024;12(6):e995-e1004. doi:10.1016/S2214-109X(24)00088-3
62. Muniyandi M, Karikalan N, Velayutham B, et al. Cost Effectiveness of a Shorter Moxifloxacin Based Regimen for Treating Drug Sensitive Tuberculosis in India. Trop Med Infect Dis. 2022;7(10):288. Published 2022 Oct 8. doi:10.3390/tropicalmed7100288
63. Rosu L, Madan JJ, Tomeny EM, et al. Economic evaluation of shortened, bedaquiline-containing treatment regimens for rifampicin-resistant tuberculosis (STREAM stage 2): a within-trial analysis of a randomised controlled trial [published correction appears in Lancet Glob Health. 2023 Feb;11(2):e196. doi: 10.1016/S2214-109X(23)00009-8]. Lancet Glob Health. 2023;11(2):e265-e277. doi:10.1016/S2214-109X(22)00498-3
64. Muniyandi M, Ramesh PM, Wells WA, et al. The Cost-Effectiveness of the BEAT-TB Regimen for Pre-Extensively Drug-Resistant TB. Trop Med Infect Dis. 2023;8(8):411. Published 2023 Aug 11. doi:10.3390/tropicalmed8080411
65. Allwood BW, van der Zalm MM, Amaral AFS, et al. Post-tuberculosis lung health: perspectives from the First International Symposium. Int J Tuberc Lung Dis. 2020;24(8):820-828. doi:10.5588/ijtld.20.0067
66. Fox GJ, Nguyen VN, Dinh NS, et al. Post-treatment Mortality Among Patients With Tuberculosis: A Prospective Cohort Study of 10 964 Patients in Vietnam. Clin Infect Dis. 2019;68(8):1359-1366. doi:10.1093/cid/ciy665
67. Kumar AKH, Kadam A, Karunaianantham R, et al. Effect of Metformin on Plasma Exposure of Rifampicin, Isoniazid, and Pyrazinamide in Patients on Treatment for Pulmonary Tuberculosis. Ther Drug Monit. 2024;46(3):370-375. doi:10.1097/FTD.0000000000001149
68. Swaminathan S, Menon PA, Gopalan N, et al. Efficacy of a six-month versus a 36-month regimen for prevention of tuberculosis in HIV-infected persons in India: a randomized clinical trial. PLoS One. 2012;7(12):e47400. doi:10.1371/journal.pone.0047400
69. Moonan PK, Nair SA, Agarwal R, et al. Tuberculosis preventive treatment: the next chapter of tuberculosis elimination in India. BMJ Glob Health. 2018;3:e001135. doi:10.1136/ bmjgh-2018-001135
70. Anurag Bhargava. The 3 HP regimen for tuberculosis preventive treatment: safety, dosage and related concerns during its large-scale implementation in countries like India. The Lancet Regional Health – Southeast Asia. Published 2024 May 12. doi:10.1016/j.lansea.2024.100422
71. Selvaraju S, Velayutham B, Rao R, et al. Prevalence and factors associated with tuberculosis infection in India. J Infect Public Health. 2023;16(12):2058-2065. doi:10.1016/j.jiph.2023.10.009
72. Prasad R, Singh A, Gupta N. Adverse drug reactions in tuberculosis and management. Indian J Tuberc. 2019;66(4):520-532. doi:10.1016/j.ijtb.2019.11.005
73. Mukherjee A, Gowtham L, Kabra SK, et al. Pharmacokinetic-Pharmacodynamic (PKPD) Analysis of Second-Line Anti-Tubercular Drugs in Indian Children with MultiDrug Resistance. Indian J Pediatr. Published online May 28, 2024. doi:10.1007/s12098-024-05135-9
74. Jeyakumar SM, Bhui NK, Singla N, et al. Long-Term Intake of Linezolid Elevates Drug Exposure and Reduces Drug Clearance and Elimination in Adults With DrugResistant Pulmonary Tuberculosis. Ther Drug Monit. 2023;45(6):754-759. doi:10.1097/FTD.0000000000001111
75. Hemanth Kumar AK, Narendran G, Kumar RS, et al. RMP exposure is lower in HIVinfected TB patients receiving intermittent than daily anti-tuberculosis treatment. Int J Tuberc Lung Dis. 2015;19(7):805-807. doi:10.5588/ijtld.14.0702
76. Moore DA. Future prospects for the MODS assay in multidrug-resistant tuberculosis diagnosis. Future Microbiol. 2007;2(2):97-101. doi:10.2217/17460913.2.2.97
77. Bwanga F, Hoffner S, Haile M, Joloba ML. Direct susceptibility testing for multi drug resistant tuberculosis: a meta-analysis. BMC Infect Dis. 2009;9:67. Published 2009 May 20. doi:10.1186/1471-2334-9-67
78. Vukugah TA, Ntoh VN, Akoku DA, et al. Research Questions and Priorities for Pediatric Tuberculosis: A Survey of Published Systematic Reviews and Meta-Analyses. Tuberc Res Treat. 2022;2022:1686047. Published 2022 Feb 7. doi:10.1155/2022/1686047
79. McKenna L, Sari AH, Mane S, et al. Pediatric Tuberculosis Research and Development: Progress, Priorities and Funding Opportunities. Pathogens. 2022;11(2):128. Published 2022 Jan 21. doi:10.3390/pathogens11020128
80. Krishnan R, Thiruvengadam K, Jayabal L, et al. An influence of dew point temperature on the occurrence of Mycobacterium tuberculosis disease in Chennai, India. Sci Rep. 2022 Apr 12;12(1):6147. doi: 10.1038/s41598-022-10111-4.
81. Shewade HD, Frederick A, Kiruthika G, et al. The First Differentiated TB Care Model From India: Delays and Predictors of Losses in the Care Cascade. Glob Health Sci Pract. 2023;11(2):e2200505. Published 2023 Apr 28. doi:10.9745/GHSP-D-22-00505Apr 28;11(2):e2200505.
Review
For citations:
Gopalan N., Newtonraj A., Elizabeth L.K., Shanmugam S.K., Ranganathan U.D., Muniyandi M., Ramraj B., Devaleenal B., Venkataraman A., Nagarajan K., Bethunaickan R., Sathya Narayanan M.K., Deka M., Selvaraju S., Santhanakrishnan R., Krishnan R., Chinnaiyan P., Palaniyandi K., Vetrivel U., Jeyakumar S.M., Natarajan S., Mathur A. Current challenges and future development of India’s healthcare system’ towards tuberculosis free India – research evidence and programmatic initiatives. The BRICS Health Journal. 2024;1(1):35-58. https://doi.org/10.47093/3034-4700.2024.1.1.35-58